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Abstract

Balancing a data center’s reliability, cost, and carbon
emissions is challenging. For instance, data centers de-
signed for high availability require a continuous flow
of power to keep servers powered on, and must limit
their use of clean, but intermittent, renewable energy
sources. In this paper, we present Yank, which uses
a transient server abstraction to maintain server avail-
ability, while allowing data centers to “pull the plug” if
power becomes unavailable. A transient server’s defin-
ing characteristic is that it may terminate anytime after a
brief advance warning period. Yank exploits the advance
warning—on the order of a few seconds—to provide
high availability cheaply and efficiently at large scales by
enabling each backup server to maintain “live” memory
and disk snapshots for many transient VMs. We imple-
ment Yank inside of Xen. Our experiments show that
a backup server can concurrently support up to 15 tran-
sient VMs with minimal performance degradation with
advance warnings as small as 10 seconds, even when
VMs run memory-intensive interactive web applications.

1 Introduction
Despite continuing improvements in energy efficiency,
data centers’ demand for power continues to rise, in-
creasing by an estimated 56% from 2005-2010 and ac-
counting for 1.7-2.2% of electricity usage in the United
States [16]. The rise in power usage has led data cen-
ters to experiment with the design of their power deliv-
ery infrastructure, including the use of renewable energy
sources [3, 20, 21]. For instance, Apple’s goal is to run
its data centers off 100% renewable power; its newest
data center includes a 40MW co-located solar farm [3].

Thus, determining the characteristics of the power
infrastructure—its reliability, cost, and carbon
emissions—has now become a key element of data
center design [5]. Balancing these characteristics is
challenging, since providing a reliable supply of power
is often antithetical to minimizing costs (capital or oper-
ational) and emissions. A state-of-the-art power delivery
infrastructure designed to ensure an uninterrupted flow
of high quality power is expensive, possibly including i)
connections to multiple power grids, ii) on-site backup
generators, and iii) an array of universal power supplies
(UPSs) that both condition grid power and guarantee
enough time after an outage to spin-up and transition

power to generators. Unfortunately, while renewable
energy has no emissions, it is unreliable—generating
power only intermittently based on uncontrollable envi-
ronmental conditions—which limits its broad adoption
in data centers designed for high reliability.

Prior research focuses on balancing a data center’s
reliability, cost, and carbon footprint by optimizing the
power delivery infrastructure itself, while continuing to
provide a highly reliable supply of power, e.g., using en-
ergy storage technologies [13, 14, 32] or designing flex-
ible power switching or routing techniques [10, 24]. In
contrast, we target a promising alternative approach: re-
laxing the requirement for a continuous power source
and then designing high availability techniques to ensure
software services remain available during unexpected
power outages or shortages. We envision data centers
with a heterogeneous power delivery infrastructure that
includes a mix of servers connected to power supplies
with different levels of reliability and cost. While some
servers may continue to use a highly reliable, but expen-
sive, infrastructure that includes connections to multiple
electric grids, high-capacity UPSs, and backup genera-
tors, others may connect to only a single grid and use
cheaper lower-capacity UPSs, and still others may rely
solely on renewables with little or no UPS energy buffer.
As we discuss in Section 2, permitting even slight reduc-
tions in the reliability of the power supply has the poten-
tial to decrease a data center’s cost and carbon footprint.

To maintain server availability while also allowing
data centers to “pull the plug” on servers if the level of
available power suddenly changes, i.e., is no longer suf-
ficient to power the active set of of servers, we introduce
the abstraction of a transient server. A transient server’s
defining characteristic is that it may terminate anytime
after an advance warning period. Transient servers arise
in many scenarios. For example, spot instances in Ama-
zon’s Elastic Compute Cloud (EC2) terminate after a
brief warning if the spot price ever exceeds the instance’s
bid price. As another example, UPSs built into racks pro-
vide some time after a power outage before servers com-
pletely lose power. In this paper, we apply the abstraction
to green data centers that use renewables to power a frac-
tion of servers, where the length of the warning period
is a function of UPS capacity or expected future energy
availability from renewables. In this context, we show
that transient servers are cheaper and greener to oper-
ate than stable servers, which assume continuous power,



since they i) do not require an expensive power infras-
tructure that ensures 24x7 power availability and ii) can
directly use intermittent renewable energy.

Unfortunately, transient servers expose applications to
volatile changes in their server allotment, which degrade
performance. Ideally, applications would always use as
many transient servers as possible, but seamlessly tran-
sition to stable servers whenever transient servers be-
come unavailable. To achieve this ideal, we propose
system support for transient servers, called Yank, that
maintains “live” backups of transient virtual machines’
(VMs’) memory and disk state on one or more stable
backup servers. Yank extends the concept of whole sys-
tem replication popularized by Remus [7] to exploit an
advance warning period, enabling each backup server to
support a many transient VMs. Highly multiplexing each
backup server is critical to preserving transient servers’
monetary and environmental benefits, allowing them to
scale independently of the number of stable servers.

Importantly, the advance warning period eliminates
the requirement that transient VMs always maintain ex-
ternal synchrony [23] with their backup to ensure cor-
rect operation, opening up the opportunity for both i) a
looser form of synchrony and ii) multiple optimizations
that increase performance and scalability. Our hypoth-
esis is that a brief advance warning—on the order of a
few seconds—enables Yank to provide high availability
in the face of sudden changes in available power, cheaply
and efficiently at large scales. In evaluating our hypoth-
esis, we make the following contributions.
Transient Server Abstraction. We introduce the tran-
sient server abstraction, which supports a relaxed variant
of external synchrony. Our variant, called just-in-time
synchrony, exploits an advance warning that only ensures
consistency with its backup before termination. We show
how just-in-time synchrony applies to advance warnings
with different durations, e.g., based on UPS capacity, and
dynamics, e.g., based on intermittent renewables.
Performance Optimizations. We present multiple op-
timizations that further exploit the advance warning to
scale the number of transient VMs each backup server
supports without i) degrading VM performance during
normal operation, ii) causing long downtimes when tran-
sient servers terminate, and iii) consuming excessive net-
work resources. Our optimizations leverage basic in-
sights about memory usage to minimize the in-memory
state each backup server must write to stable storage.
Implementation and Evaluation. We implement Yank
inside the Xen hypervisor and evaluate its performance
and scalability in a range of scenarios, including with
different size UPSs and using renewable energy sources.
Our experiments demonstrate that a backup server can
concurrently support up to 15 transient VMs with min-
imal performance degradation using an advance warn-

Technique Overhead Extra Cost Warning
Live Migration None None Lengthy

Yank Low Low Modest
High Availability High High None

Table 1: Yank has less overhead and cost than high avail-
ability, but requires less warning than live migration.

ing as small as 10 seconds, even when running memory-
intensive interactive web applications, which is a chal-
lenging application for whole system replication.

2 Motivation and Background
We first define the transient server abstraction before dis-
cussing Yank’s use of the abstraction in green data cen-
ters that use intermittent renewable power sources.
Transient Server Abstraction. We assume a virtual-
ized data center where applications run inside VMs on
one of two types of physical servers: (i) always-on stable
servers with a highly reliable power source and (ii) tran-
sient servers that may terminate anytime. Central to our
work is the notion of an advance warning, which signals
that a transient server will shutdown after a delay Twarn.

Once a transient server receives an advance warning,
a data center must move any VMs (and their associated
state) hosted on the transient server to a stable server to
maintain their availability. Depending on Twarn’s dura-
tion, two solutions exist to transition a VM to a stable
server. If Twarn is large, it may be possible to live mi-
grate a VM from a transient to a stable server. VM migra-
tion requires copying the memory and disk (if necessary)
state [6], so the approach is only feasible if Twarn is long
enough to accommodate the transfer. Completion times
for migration are dependent on a VM’s memory and disk
size, with prior work reporting times up to one minute for
VMs with only 1GB memory and no disk state [1, 19].

An alternative approach is to employ a high availabil-
ity mechanism, such as Remus [7, 22], which requires
maintaining a live backup copy of each transient VM on
a stable server. In this case, a VM transparently fails
over to the stable server whenever its transient server
terminates. While the approach supports warning times
of zero, it requires the high runtime overhead of con-
tinuously propagating state changes from the VM to its
backup. In some cases, memory-intensive, interactive
workloads may experience 5X degradation in latency [7].
Supporting an advance warning of zero also imposes a
high cost, requiring a backup server to keep VM mem-
ory snapshots resident in its own memory. In essence,
supporting a warning time of zero requires a 1:1 ratio be-
tween transient and backup servers. Unfortunately, stor-
ing memory snapshots on disk is not an option, since
it would further degrade performance by reducing the
memory bandwidth (∼3000MB/s) of primary VMs to the
disk bandwidth (<100MB/s) of the backup server.
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Figure 1: A data center with transient servers powered
by renewables and low-capacity UPSs, and stable servers
powered by the grid and redundant, high-capacity UPSs.

Live migration and high availability represent two ex-
treme points in the design space for handling transient
servers. The former has low overhead but requires long
warning times, while the latter has high overhead but
handles warning times of zero. Yank’s goal is to exploit
the middle ground between these two extremes, as out-
lined in Table 1, when a short advance warning is insuffi-
cient to complete a live migration, but does not necessar-
ily warrant the overhead of externally synchronous live
backups of VM memory and disk state. Yank optimizes
for modest advance warnings by maintaining a backup
copy, similar to Remus, of each transient VM’s mem-
ory and disk state on a stable backup server. However,
Yank focuses on keeping costs low, by highly multiplex-
ing each backup server across many transient VMs.

As we discuss, our approach requires storing portions
of each VM’s memory backup on stable storage. We
show that for advance warnings of a few seconds, Yank
provides similar failover properties as high availability,
but with an overhead and cost closer to live migration.
In fact, Yank devolves to high availability for a warning
time of zero, and reduces to a simple live migration as
the warning time becomes larger. Yank focuses on sce-
narios where there is an advance warning of a fail-stop
failure. Many of these failures stem from power outages
where energy storage provides the requisite warning.
Green Data Center Model. Figure 1 depicts the data
center infrastructure we assume in our work. As shown,
the data center powers servers using two sources: (i) on-
site renewables, such as solar and wind energy, and (ii)
the electric grid. Recent work proposes a similar archi-
tecture for integrating renewables into data centers [18].

We assume that the on-site renewable sources power
a significant fraction of the data center’s servers. How-
ever, since renewable generation varies based on envi-
ronmental conditions, this fraction also varies over time.
While UPSs are able to absorb short-term fluctuations in
renewable generation, e.g, over time-scales of seconds to
minutes caused by a passing cloud or a temporary drop
in wind speed, long-term fluctuations require switching
servers to grid power or temporarily deactivating them.

A key assumption in our work is that it is feasible to
switch some, but not all, servers from renewable sources
to the grid to account for these power shortfalls.

The constraint of powering some, but not all, servers
from the grid arises if a data center limits its peak power
usage to reduce its electricity bill. Since peak power dis-
proportionately affects the electric grid’s capital and op-
erational costs, utilities routinely impose a surcharge on
large industrial power consumers based solely on their
peak demand, e.g., the maximum average power con-
sumed over a 30 minute rolling window [10, 13]. Thus,
data centers can reduce their electricity bills by capping
grid power draw. In addition, to scale renewable deploy-
ments, data centers will increasingly need to handle their
power variations locally, e.g., by activating and deactivat-
ing servers, since i) relying on the grid to absorb varia-
tions is challenging if renewables contribute a large frac-
tion (∼20%) of grid power and ii) absorbing variations
entirely using UPS energy storage is expensive [13]. In
the former case, rapid variations from renewables could
cause grid instability, since generators may not be agile
enough to balance electricity’s supply and demand.

Thus, in our model, green data centers employ both
stable and transient servers. Both server types require
UPSs to handle short-term power fluctuations. How-
ever, we expect transient servers to require only a few
seconds of expensive UPS capacity to absorb short-term
power fluctuations, while stable servers may require tens
of minutes of capacity to permit time to spin-up and tran-
sition to backup generators in case of a power outage.

3 Yank Design
Since Yank targets modest-sized advance warnings on
the order of a few seconds, it cannot simply migrate a
transient VM to a stable server after receiving a warn-
ing. To support shorter warning times, one option is to
maintain backup copies (or snapshots) of a VM’s mem-
ory and disk state on a dedicated stable server, and then
continuously update the copies as they change. In this
case, if a transient VM terminates, this backup server can
restart the VM using the latest memory and disk snap-
shot. A high availability technique must commit changes
to a VM’s memory and disk state to a backup server fre-
quently enough to support a warning time of zero. How-
ever, supporting a warning time of zero necessitates a 1:1
ratio between transient and backup servers, eliminating
transient servers’ monetary and environmental benefits.

In contrast, Yank leverages the advance warning time
to scale the number of transient servers independently of
the number of backup servers by controlling when and
how frequently transient VMs commit state updates to
the backup server. In essence, the warning time Twarn

limits the amount of data a VM can commit to its backup
server after receiving a warning. Thus, during normal op-



T1 T2
T1

Transient Server

Transient VMs

T3 T4

Transient Server

Transient VMs

T5

Tn-1 Tn

Transient Server

Transient VMs

T1 T2

Stable Server

Tn-1 Tn

Stable Server

1

1

1

3

3

3

4

4

5

5

In-Memory Queues

Memory
Snapshots

Tn

Backup Server (Memory)

Backup
Engine

T1 Tn

In-Memory Queues

Disk
Snapshots

Tn

Backup Server (Disk)

Backup
Engine

1

T1 Tn

T1

T11

2

2

Snapshot Manager

Snapshot Manager

Snapshot Manager
Restoration 

Service

Restoration 
Service

Figure 2: Yank’s Design and Basic Operation

eration, a transient VM need only ensure the size of dirty
memory pages and disk blocks remains below this limit.
Maintaining this invariant guarantees that no update will
be lost if a VM terminates after a warning, while pro-
viding additional flexibility over when to commit state.
To keep its overhead and cost low, Yank highly multi-
plexes backup servers, allowing each to support many
(>10) transient VMs by i) storing VM memory and disk
snapshots, in part, on stable storage and ii) using mul-
tiple optimizations to prevent saturating disk bandwidth.
Thus, given an advance warning, Yank supports the same
failure properties as high availability, but uses fewer re-
sources, e.g., hardware or power, for backup servers.

3.1 Yank Architecture
Figure 2 depicts Yank’s architecture, which includes a
snapshot manager on each transient server, a backup
engine on each stable backup server, and a restora-
tion service on each stable (non-backup) server. We
focus primarily on how Yank maintains memory snap-
shots at the backup server, since we assume each backup
server cannot keep memory snapshots for all transient
VMs resident in its own memory. Thus, Yank must
mask the order-of-magnitude difference between a tran-
sient VM’s memory bandwidth (∼3000MB/s) and the
backup server’s disk bandwidth (< 100MB/s). By con-
trast, maintaining disk snapshots poses less of a per-
formance concern, since the speed of a transient VM’s
disk and its backup server’s disk are similar in magni-
tude. This characteristic combined with a multi-second
warning time permits asynchronous disk mirroring to a
backup server without significant performance degrada-
tion. Thus, while many of our optimizations below apply
directly to disk snapshots, Yank currently uses off-the-
shelf software (DRBD [9]) for disk mirroring.

Figure 2 also details Yank’s functions. The snapshot
manager executes within the hypervisor of each transient
server and tracks the dirty memory pages of its resi-
dent VMs, periodically transmitting these pages to the
backup engine, running at the backup server (1). The

backup engine then queues each VM’s dirty memory
pages in its own memory before writing them to disk
(2). Yank includes a service that monitors UPS state-
of-charge, via the voltage level across its diodes, and
translates the readings into a warning time based on the
power consumption of transient servers (3). The service
both i) informs backup and transient servers when the
warning time changes and ii) issues warnings to transient
and backup servers of an impending termination due to
a power shortage. Since Yank depends on warning time
estimates, the service above runs on a stable server. We
discuss warning time estimation further in Section 3.5.

Upon receiving a warning (3), the snapshot manager
pauses its VMs and commits any dirty pages to the
backup engine before the transient server terminates.
The backup engine then has two options, assuming it is
too resource-constrained to run VMs itself: either store
the VMs’ memory images on disk for later use, or mi-
grate the VMs to another stable (non-backup) server (4).
Yank executes a simple restoration service on each stable
(non-backup) server to facilitate rapid VM migration and
restoration after a transient server terminates.

3.2 Just-in-Time Synchrony
Since Yank receives an advance warning of time Twarn

before a transient server terminates, its VM memory
snapshots stored on the backup server need not maintain
strict external synchrony [23]. Instead, upon receiving
a warning of impending termination, Yank only has to
ensure what we call just-in-time synchrony: a transient
VM and its memory snapshot on the backup server are
always capable of being brought to a consistent state be-
fore termination. To guarantee just-in-time synchrony,
as with external synchrony, the snapshot manager tracks
dirty memory pages and transmits them to the backup en-
gine, which then acknowledges their receipt. However,
unlike external synchrony, just-in-time synchrony only
requires the snapshot manager to buffer a VM’s exter-
nally visible, e.g., network or disk, output when the size
of the dirty memory pages exceed an upper threshold Ut,
such that it is impossible to commit any more dirty pages
to the backup engine within time Twarn.

In the worst case, with a VM that dirties pages faster
than the backup engine is able to commit them, the snap-
shot manager is continually at the threshold, and Yank
reverts to high availability-like behavior by always de-
laying the VM’s externally visible output until its mem-
ory snapshot is consistent. Since we assume the backup
server is not able to keep every transient VM memory
snapshot resident in its own memory, the speed of the
backup engine’s disk limits the rate it is able to commit
page changes. While memory bandwidth is an order of
magnitude (or more) greater than disk (or network) band-
width, Yank benefits from well-known characteristics of
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Figure 3: Working set size over time for three bench-
marks: SPECjbb, TPCW, and Linux kernel compile.

typical in-memory application working sets to prevent
saturating disk (or network) bandwidth. Specifically, the
size of in-memory working sets tend to i) grow slowly
over time and ii) be smaller than the total memory [8].

Slow growth stems from applications frequently re-
writing the same memory pages, rather than always writ-
ing new ones. Yank only has to commit the last re-write
of a dirty page (and not the intervening writes) to the
backup server after reaching its upper threshold of dirty
pages Ut. In contrast, to support termination with no ad-
vance warning, a VM must commit nearly every memory
write to the backup server. In addition, small working
sets enable the backup engine to keep most VMs’ work-
ing sets in memory, reducing the likelihood of saturating
disk bandwidth from writing dirty memory pages to disk.
Recent work extends this insight to collections of VMs in
data centers, showing that while the size of a single VM’s
working set may experience temporary bursts in memory
usage, the bursts are often brief and not synchronized
across VMs [33]. Yank relies on these observations in
practice to highly multiplex each backup server’s mem-
ory without saturating disk bandwidth or degrading tran-
sient VM performance during normal operation.

To confirm the characteristics above, we conducted
a simple experiment: Figure 3 plots the dirty memory
pages measured every 100ms for a VM with 1GB mem-
ory over a thirty minute period with three different ap-
plications: 1) the SPECjbb benchmark with 400 ware-
houses, 2) the TPC-W benchmark with 100 clients per-
forming a browsing workload and 3) a Linux kernel (v
3.4) compile. The experiment verifies the observations
above, namely that in each case i) the VM dirties less
than 350MB or 35% of the available memory and ii) after
experiencing an initial burst in memory usage the work-
ing set grows slowly over time.

Yank also relies on the observations above in setting its
upper threshold Ut. To preserve just-in-time synchrony,
this threshold represents the maximum size of the dirty
pages the snapshot manager is capable of committing to
the backup engine within the warning time. Our premise
is that as long as the backup engine is able to keep each
VM’s working set in memory, even if all VMs simulta-

neously terminate, it should be able to commit any out-
standing dirty pages without saturating disk bandwidth.
Thus, Ut is a function of the warning time, the avail-
able network bandwidth between transient and backup
servers, and the number of transient servers that may si-
multaneously terminate. For instance, for a single VM
hosted on a transient server using a 1Gbps network link,
a one second advance warning results in Ut=125MB. In
Figure 3 above, Ut=125MB would only force SpecJBB
to pause briefly on startup (where its usage briefly bursts
above 125MB/s). The other applications never allocate
more than 125MB in one second.

Of course, to support multiple VMs terminating simul-
taneously requires a lower Ut. However, as discussed in
Section 3.5, Yank bases its warning time estimates on
an “empty” UPS being at 40-50% depth-of-discharge.
Thus, Ut need not be exactly precise, providing time
to handle unlikely events, such as a warning coinciding
with a correlated burst in VM memory usage, which may
slow down commits by saturating the backup engine’s
disk bandwidth, or all VMs simultaneously terminating.

3.3 Optimizing VM Performance
For correctness, just-in-time synchrony only requires
pausing a transient VM and committing dirty pages to the
backup engine once their size reaches the upper thresh-
old Ut, described above. A naı̈ve approach only employs
a single threshold at Ut by simply committing all dirty
pages once their size reaches Ut. However, this approach
has two drawbacks. First, it forces the VM to inevitably
delay the release of externally visible output each time
it reaches Ut, effectively pausing the VM from the per-
spective of external clients. If the warning time is long,
e.g., 5-10 seconds, then the Ut will be large, causing long
pauses. Second, it causes bursts in network traffic that af-
fect other network applications.

To address these issues, the snapshot manager also
uses a lower threshold Lt. Once the size of the dirty
pages reaches Lt, it begins asynchronously committing
dirty pages to the backup engine until the size is less
than Lt. Algorithm 1 shows pseudo-code for the snap-
shot manager. The downside to using Lt is that the snap-
shot manager may end up committing more pages than
with a single threshold, since it may unnecessarily com-
mit the same memory page multiple times. Yank uses
two techniques to mitigate this problem. First, to deter-
mine the order to commit pages, the snapshot manager
associates a timestamp with each dirty page and uses a
Least Recently Used (LRU) policy to prevent commit-
ting pages that are being frequently re-written. Second,
the snapshot manager adaptively sets the lower threshold
to be just higher than the VM’s working set, since the
working set contains the pages a VM is actively writing.

As we discuss in Section 5, our results show that as



Algorithm 1: Snapshot Manager’s Algorithm for
Committing Dirty Pages to the Backup Engine

1 Initialize Dirty Page Bitmap;
2 while No Warning Signal do
3 Check Warning Time Estimate;
4 Convert Warning Time to Upper Threshold (Ut);
5 Get Num. Dirty Pages;
6 if Num. Dirty Pages > Ut then
7 Buffer Network Output of Transient VM;
8 Transmit Dirty Pages to Backup Engine to
9 Reduce Num. Dirty Pages to Lower Threshold (Lt);

10 Wait for Ack. from Backup Engine;
11 Unset Dirty Bitmap for Pages Sent;
12 Release Buffered Network Packets;
13 end
14 if Num. Dirty Pages > Lt then
15 Transmit Dirty Pages to Backup Engine at Specified Rate;
16 Wait for Ack. from Backup Engine;
17 Unset Dirty Bitmap for Pages Sent;
18 end
19 end
20 Warning Received;
21 Pause the Transient VM;
22 Transmit Dirty Pages to Receiver Service;
23 Destroy the Transient VM;

long as the size of the VM’s working set is less than Ut,
using Lt results in smoother network traffic and fewer,
shorter VM pauses. Of course, a combination of a large
working set and short warning time may force Yank to
degrade performance by continuously pausing the VM
to commit frequently changing memory pages. In Sec-
tion 5, we evaluate transient VM performance for a vari-
ety of applications with advance warnings in the range
of 5-10 seconds. Finally, the snapshot manager im-
plements standard optimizations to reduce network traf-
fic, including content-based redundancy elimination and
page deltas [34, 35]. The former technique associates
memory pages with a hash based on their content, allow-
ing the snapshot manager to send a 32b hash index rather
than a 4kB memory page if the page is already present
on the backup server. The technique is most useful in re-
ducing the overhead of committing zero pages. The lat-
ter technique allows the snapshot manager to only send a
page delta if it has previously committed a memory page.

3.4 Multiplexing the Backup Server
To multiplex many transient VMs, the backup engine
must balance two competing objectives: using disk band-
width efficiently during normal operation, while mini-
mizing transient VM downtime in the event of a warning.

3.4.1 Maximizing Disk Efficiency
The backup engine maintains an in-memory queue for
each transient VM to store newly committed (and ac-
knowledged) memory pages. Since the backup server’s
memory is not large enough to store a complete mem-
ory snapshot for every transient VM it supports, it must
inevitably write pages to disk. Yank includes multiple
optimizations to prevent unnecessary disk writes.

First, when a transient VM commits a change to a
memory page already present in its queue, the receiver
deletes the out-of-date memory page without writing it
to disk. As a result, the backup engine can often elimi-
nate disk writes for frequently changing pages, even if
the snapshot manager commits them. Second, to fur-
ther prevent unnecessary writes, the backup engine or-
ders each VM’s queue using an LRU policy. Our use
of LRU in both the snapshot manager (when determin-
ing which pages to commit on the transient VM) and the
backup engine (when determining which pages to write
to disk on the backup server) follows the same princi-
ples as a standard hierarchical cache. In addition, to ex-
ploit the observation that bursts in VM memory usage are
not highly correlated, the backup engine selects pages to
write to disk by applying LRU globally across all VM
queues. Since it allocates a fixed amount of memory for
all queues (near the backup server’s total memory), the
global LRU policy allows each VM’s queue to grow and
shrink as its working set size changes.

Finally, to further maximize disk efficiency, the
backup engine could also use a log-structured file sys-
tem [25], since its workload is write mostly, read rarely
(only in the event of a failure). We discuss this design
alternative and its implications in the next section.

3.4.2 Minimizing Downtime
The primary bottleneck in restoring a transient VM af-
ter a failure is the time required to read its memory state
from the backup server’s disk. Thus, to minimize down-
time, as soon as a transient VM receives a warning, the
backup engine immediately halts writing dirty pages to
disk and begins reading the VM’s existing (out-of-date)
memory snapshot from disk, without synchronizing it
with the queue of dirty page updates. Instead, the backup
engine first sends the VM memory snapshot from disk to
a restoration service, running on the destination stable
(non-backup) server. We assume that an exogenous pol-
icy exists to select a destination stable server in advance
to run a transient VM if its server terminates. In parallel,
the backup engine also sends the VM’s in-memory queue
to the restoration service, after updating it with any out-
standing dirty pages from the halted transient VM. To re-
store the VM, the restoration service applies the updates
from the in-memory queue to the memory snapshot from
the backup server’s disk without writing to its own disk.
Importantly, the sequence only requires reading a VM’s
memory snapshot from disk once, which begins as soon
as the backup engine receives the warning. Note that if
multiple transient VMs fail simultaneously, the backup
engine reads and transmits memory snapshots from disk
one at a time to maximize disk efficiency and minimize
downtime across all VMs.

There are two design alternatives for determining how



the backup engine writes dirty page updates to its disk.
As mentioned above, one approach is to use a log-
structured file system. While a pure log-structured file
system works well during normal operation, it results in
random-access reads of a VM’s memory snapshot stored
on disk during failover, significantly increasing down-
time (by ∼100X, the difference between random-access
and sequential disk read bandwidth). In addition, main-
taining log-structured files may lead to large log files
on the backup server over time. The other alternative
is to store each VM memory snapshot sequentially on
disk, which results in slow random-access writes during
normal operation but leads to smaller downtimes during
failover because of faster sequential reads. Of course,
this alternative is clearly preferable for solid state drives,
since there is no difference between sequential and ran-
dom write bandwidth. Considering these tradeoffs, in
Yank’s current implementation we use this design alter-
native to minimize downtime during failure.

3.5 Computing the Warning Time
Yank’s correct operation depends on estimates of the ad-
vance warning time. There are multiple ways to compute
the warning time. If transient servers connect to the grid,
the warning time is static and based on server power con-
sumption and UPS energy storage capacity. In the event
of a power outage, if the UPS capacity is N watt-hours
and the aggregate maximum server power is M watts,
then the advance warning time is N

M . Alternatively, the
warning time may vary in real-time if green data centers
charge UPSs from on-site renewables. In this case, the
UPSs’ varying state-of-charge dictates the warning time,
ensuring that transient servers are able to continue oper-
ation for some period if renewable generation immedi-
ately drops to zero. Note that warning time estimates do
not need to be precisely accurate. Since, to minimize
their amortized cost, data centers should not routinely
use UPSs beyond a 40%-50% depth-of-discharge, even
an “empty” UPS has some remaining charge to mind-
the-gap and compensate for slight inaccuracies in warn-
ing time estimates. As a result, a natural buffer exists if
warning time estimates are too short, e.g., by 1%-40%,
although repeated inaccuracies degrade UPS lifetime.

4 Yank Implementation
Yank’s implementation is available at
http://yank.cs.umass.edu. We implement the snap-
shot manager by extending Remus inside the Xen
hypervisor (v4.2). By default, Remus tracks dirty pages
over short epochs (∼100ms) using shadow page tables
and pausing VMs each epoch to copy dirty memory
pages to a separate buffer for transmission to the backup
server. While VMs may speculatively execute after
copying dirty pages to the buffer, but before receiving
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Figure 4: Snapshot Manager on the Transient Server

an acknowledgement from the backup server, they must
buffer external network or disk output to preserve exter-
nal synchrony. Remus only releases externally-visible
output from these buffers after the backup server has
acknowledged receiving dirty pages from the last epoch.
Of course, by conforming to strict external synchrony,
Remus enables a higher level of protection than Yank,
including unexpected failures with no advance warn-
ing, e.g., fail-stop disk crashes. Although our current
implementation only tracks dirty memory pages, it is
straightforward to extend our approach to disk blocks.

Rather than commit dirty pages to the backup server
every epoch, our snapshot manager uses a simple bitmap
to track dirty pages and determine whether to commit
these pages to the backup engine based on the upper
and lower threshold, Ut and Lt. In addition, rather than
commit CPU state each epoch, as in Remus, the snap-
shot manager only commits CPU state when it receives
a warning that a transient server will terminate. Imple-
menting the snapshot manager required adding or mod-
ifying roughly 600 lines of code (LOC), primarily in
files related to VM migration, save/restore, and network
buffering, e.g., xc domain save.c, xg save restore.h, and
sch plug.c. Finally, the snapshot manager includes
a simple /proc interface to receive notifications about
warnings or changes in the warning time. Figure 4 de-
picts the snapshot manager’s implementation. As men-
tioned in the previous section, our current implementa-
tion uses DRBD to mirror disk state on a backup server.

Instead of modifying Xen, we implement Yank’s
backup engine “from scratch” at user-level for greater
flexibility in controlling its in-memory queues and disk
writing policy. The implementation is a combination of
Python and C, with a Python front-end (∼300LOC) that
accepts network connections and forks a backend C pro-
cess (∼1500LOC) for each transient VM, as described
below. Since the backup engine extends Xen’s live mi-
gration and Remus functionality, the front-end listens on
the same port (8002) that Xen uses for live migration.
Figure 5 shows a detailed diagram of the backup engine.

For each transient VM, the backend C process accepts
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dirty page updates from the snapshot manager and sends
acknowledgements. Each update includes the number of
pages in the update, as well as each page’s page num-
ber and contents (or a delta from the previous page sent).
The process then places each update in an in-memory
producer/consumer queue. To minimize disk writes, as
described in Section 3.4.1, before queuing the update,
the process checks the queue to see if a page already has
a queued update. If so, the process merges the two up-
dates. To perform these checks, the process maintains
a hashtable that maps page numbers to their position
in their queue. The process’s consumer thread then re-
moves pages from the queue (in LRU order based on a
timestamp) and writes them to disk. In the current im-
plementation, the backend process stores VM memory
pages sequentially in a file on disk. For simplicity, the
file’s format is the same as Xen’s format for storing saved
VM memory images, e.g., via xm save. As discussed
in Section 3.4.2, this results in low downtimes during mi-
gration, but lower performance during normal operation.

Finally, we implement Yank’s restoration service
(∼300LOC) at user-level in C. The daemon accepts a
VM memory snapshot and an in-memory queue of pend-
ing updates, and then applies the updates to the snap-
shot without writing to disk. Since our implementation
uses Xen’s image format, the service uses xm restore
from the resulting in-memory file to re-start the VM.

5 Experimental Evaluation
We evaluate Yank’s network overhead, VM performance,
downtime after a warning, and scalability, and then con-
duct case studies using real renewable energy sources.
While our evaluation does not capture the full range of
dynamics present in a production data center, it does
demonstrate Yank’s flexibility to handle a variety of dy-
namic and unexpected operating conditions.

5.1 Experimental Setup
We run our experiments on 20 blade servers with 2.13
GHz Xeon processors with 4GB of RAM connected to
the same 1Gbps Ethernet switch. Each server running
the snapshot manager uses our modified Xen (v4.2) hy-
pervisor, while those running the backup engine and the
restoration service use unmodified Xen (v4.2). In our
experiments, each transient VM uses one CPU and 1GB
RAM, and runs the same OS and kernel (Ubuntu 12.04,

Linux kernel 3.2.0). We experiment with three bench-
marks from Figure 3—TPC-W, SPECjbb, and a Linux
kernel compile—to stress Yank in different ways.
TPC-W is a benchmark web application that emulates
an online store akin to Amazon. We use a Java servlets-
based multi-tiered configuration of TPC-W that uses
Apache Tomcat (v7.0.27) as a front end and MySQL
(v5.0.96) as a database backend. We use additional VMs
to run clients that connect to the TPC-W shopping web-
site. Our experiments use 100 clients connecting to TPC-
W and performing the “browsing workload” where 95%
of the clients only browse the website and the remaining
5% execute order transactions. TPC-W allows us to mea-
sure the influence of Yank on the response time perceived
by the clients of an interactive web application.
SPECjbb 2005 emulates a warehouse application for
processing customer orders using a three-tier architec-
ture comprising web, application, and database tiers. The
benchmark predominantly exercises the middle tier that
implements the business logic. We execute the bench-
mark on a single server in standalone mode using local
application and database servers. SPECjbb is memory-
intensive, dirtying memory at a fast rate, which stresses
Yank’s ability to maintain snapshots on the backup server
without degrading VM performance.
Linux Kernel Compile compiles v3.5.3 of the kernel,
along with all of its modules. The kernel compilation
stresses both the memory and disk subsystems and is rep-
resentative of a common development workload.

Note that the first two benchmarks are web applica-
tions, which are challenging due to their combination of
interactivity and rapid writes to memory. We focus on
interactive applications rather than non-interactive batch
jobs, since the latter are more tolerant to delays and per-
mit simple scheduling approaches to handling periodic
power shortfalls, e.g., [2, 11, 12, 17]. Yank is applica-
ble to batch jobs, although instead of scheduling them it
shifts them to and from transient servers as power varies.

5.2 Benchmarking Yank’s Performance
Network Overhead. Scaling Yank requires every tran-
sient VM to continuously send memory updates to the
backup server. We first evaluate how much network
traffic Yank generates, and how its optimizations help
in reducing that traffic. As discussed in Section 3.3,
the snapshot manager begins asynchronously commit-
ting dirty pages to the backup engine after reaching a
lower threshold Lt. We compare this policy, which we
call async, with the naı̈ve policy, which we call sync,
that enforces just-in-time synchrony by starting to com-
mit dirty pages only after their size reaches the upper
threshold Ut. Rather than commit all dirty pages when
reaching Ut, which causes long pauses, the policy com-
mits pages until the dirty pages reaches 0.9 ∗ Ut. We ex-
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(a) Data Transferred with TPC-W
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Figure 6: Network overhead for each benchmark over a 15 minute period.

amine two variants of the async policy: the first one sets
the lower threshold Lt to 0.5∗Ut and the second one sets
it to 0.75 ∗ Ut. Our standard async and sync policies use
a FIFO queue to select pages to commit to the backup
engine; we label Yank’s LRU optimization separately.

In this experiment, transient VMs draw power from
the grid, and have a static warning time dictated by their
UPS capacity. We also limit the backup engine to using
an in-memory queue of 300MB to store memory updates
from each 1GB transient VM. We run each experiment
for 15 minutes before simulating a power outage by issu-
ing a warning to the transient and backup server. We then
measure the data transferred both before and after the
warning for each benchmark. Figure 6 shows the results,
which demonstrate that network usage, in terms of total
data transferred, decreases with increasing warning time.
As expected, the sync policy leads to less network us-
age than either async policy, since it only commits dirty
pages when absolutely necessary. However, the experi-
ment also shows that combining LRU with async reduces
the network usage compared to async with a FIFO pol-
icy. We see that with just a 10 second warning time,
Yank sends less than 100MB of data over 15 minutes
for both TPC-W and the kernel compile, largely because
after their initial memory burst these applications re-
write the same memory pages. For the memory-intensive
SPECjbb benchmark, a 10 second warning time results
in poor performance and excessive network usage. How-
ever, a 20 second warning time reduces network usage to
<100MB over the 15 minute period.
Result: The sync policy has the lowest network over-
head, although async with LRU also results in low net-
work overhead. With these policies, a 10 second warning
leads to < 100MB of data transfer over 15 minutes.
Transient VM Performance. We evaluate Yank’s effect
on VM performance during normal operation by using
the same experimental setup as before except that we do
not issue any warning and only evaluate pre-warning per-
formance. Here, we focus on TPC-W, since it is an in-
teractive application that is sensitive to VM pauses from
buffering network or disk output. We measure the av-
erage response time of TPC-W clients, while varying
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Figure 7: TPC-W response time as warning time varies.

both the warning time and the snapshot manager’s pol-
icy for committing pages to the backup engine. Figure 7
shows that the async policy that selects pages to com-
mit using and LRU policy results in the lowest average
response time. The async policy reduces VM pauses, be-
cause the snapshot manager begins committing pages to
the backup as soon as it hits the lower threshold Lt rather
than waiting until reaching Ut, and forcing a large com-
mit to the backup server. The experiment also demon-
strates that with even a brief five second warning, the re-
sponse time is <500ms using the async policy with LRU.

By contrast, with a warning time of zero the average
response time rises to over nine seconds. In addition, the
90th percentile response time was also near 15 seconds,
indicating that the average response is not the result of
a few overly bad response times. With no warning, the
VM must pause and mirror every memory write to the
backup server and receive an acknowledgement before
proceeding. Although Remus [7] does not use our spe-
cific TPC-W benchmark, their results with the SPECweb
benchmark are qualitatively similar, showing 5X worse
latency scores. Thus, our results confirm that even mod-
est advance warning times lead to vast improvements in
response time for interactive applications.
Result: Yank imposes minimal overhead on TPC-W dur-
ing normal operation. With a brief five second warning
time, the average response time of TPC-W is 10x less
(<500ms) than with no warning time (>9s).
VM Downtime after a Warning. The experiments
above demonstrate that Yank imposes modest network
and VM overhead during normal operation. In this ex-
periment, we issue a warning to the transient server at
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Figure 8: Downtime with the straightforward approach.

the end of 15 minutes and measure downtime while
the backup engine migrates the transient VM to a sta-
ble server. We compare Yank’s approach (described in
Section 3.4.1), which requires only a single read of the
VM’s memory image from disk, with a straightforward
approach where the backup engine applies all updates to
the memory snapshot before migrating it to the destina-
tion stable server. Note that in this latter case there is no
need for Yank’s restoration service, since the backup en-
gine can simply perform a Xen stop-and-copy migration
of the consistent memory snapshot at the backup server.

Figure 8 plots the transient VM’s downtime using the
straightforward approach, and Figure 9 plots it using
Yank’s approach. Each graph decomposes the down-
time into each stage of the migration. In Figure 8, the
largest component is the time required to create a consis-
tent memory snapshot on the backup engine by updating
the memory snapshot on disk. In addition, we run the
experiment with different sizes of the in-memory queue
to show that downtime increases with queue size, since
a larger queue size requires writing more updates to disk
after a warning. While reading the VM’s memory snap-
shot from disk and transmitting it to the destination stable
server still dominates downtime using Yank’s approach
(Figure 9), it is less than half than with the straight-
forward approach and is independent of the queue size.
Note that Yank’s downtimes are in the tens of seconds
and bounded by the time to read a memory snapshot
from disk. While these downtimes are not long enough
to break TCP connections, they are much longer than the
millisecond-level downtimes seen by live migration.
Result: Yank minimizes transient VM downtime after a
warning to a single read of its memory snapshot from
disk, which results in a 50s downtime for a 1GB VM.
Scalability. The experiments above focus on perfor-
mance with a single VM. We also evaluate how many
transient VMs the backup engine is able to support con-
currently, and the resulting impact on transient VM per-
formance during normal operation. Again, we focus on
the TPC-W benchmark, since it is most sensitive to VM
pauses. In this case, our experiments last for 30 minutes
using a warning time of 10 seconds, and scale the number
of transient VMs running TPC-W connected to the same
backup server. We measure CPU and memory usage on
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Figure 9: Downtime with Yank’s optimizations.

the backup server, as well as the average response time of
the TPC-W clients. Figure 10 shows the results, includ-
ing the maximum of the average response time across all
transient VMs observed by the TPC-W clients, the CPU
utilization on the backup server, and the backup engine’s
memory usage as a percentage of total memory. The fig-
ure demonstrates that, in this case, the backup server is
capable of supporting as many as 15 transient VMs with-
out the average client response time exceeding 700ms.
Note that without using Yank the average response time
for TPC-W clients running our workload is 300ms. In
addition, even when supporting 15 VMs, the backup en-
gine does not completely use its entire CPU or memory.
Result: Yank is able to highly multiplex each backup
server. Our experiments indicate that with a warning
time of 10 seconds, a backup server can support at least
15 transient VMs running TPC-W with little performance
degradation for even a challenging interactive workload.

5.3 Case Studies
The previous experiments benchmark different aspects of
Yank’s performance. In this section, we use case studies
to show how Yank might perform in a real data center
using renewable energy sources. We use traces from our
own solar panel and wind turbine deployments, which
we have used in prior work [4, 26, 27, 29]. Note that in
these experiments the warning time changes as renew-
able generation fluctuates, since we assume renewables
charge a small UPS that powers the servers.

5.3.1 Adapting to Renewable Generation
Figure 11 shows the renewable power generation from
compressing a 3-day energy harvesting trace. For these
experiments, we assume the UPS capacity dictates a
maximum warning time of 20 seconds, and that each
server requires a maximum power of 300W. Our results
are conservative, since we assume servers always draw
their maximum power. In the trace, at t=60, power gen-
eration falls below the 300W the server requires, causing
the battery to discharge and the warning time to decrease.
At t=80, power generation rises above 300W, causing the
warning time to increase. Figure 11 shows the instanta-
neous response time of a TPC-W client running on a tran-
sient VM as power varies. The response time rises when
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Figure 10: Yank scalability

power generation decreases, and falls when it increases.
The experiment illustrates an important property of

Yank: it is capable of translating variations in power
availability to variations in application performance,
even for interactive application running on a sin-
gle server. Since servers remain far from energy-
proportional, decreases in power availability require data
centers to deactivate servers. Until now, the only way
to scale application performance with power was to ap-
proximate energy proportionality in large clusters by de-
activating a subset of servers [30]. For interactive appli-
cations not tolerant to delays, this approach is not ideal,
especially if applications run on small set of servers. Of
course, Yank’s approach complements admission con-
trol policies that may simply reject clients to decrease
load, rather than satisfying existing clients with a slightly
longer response time. In many cases, simply rejecting
new or existing clients may be undesirable.
Result: Yank translates variations in power availability
to variations in application performance for interactive
applications running on a small number of servers.

5.3.2 End-to-End Examples
We use end-to-end examples to demonstrate how Yank
reacts to changes in renewable power by migrating tran-
sient VMs between transient and stable servers.
Solar Power. We first compress solar power traces from
7am to 5pm on both a sunny day and a cloudy day to a
2-hour period, and then scale the power level such that
the trace’s average power is equal to a server’s maximum
power (300W). While we compress our traces to enable
experiments to finish within reasonable times, we do not
introduce any artificial variability in the power genera-
tion, since renewable generation is already highly vari-
able [31]. We then emulate a solar-powered transient
server using a UPS that provides a maximum warning
time of 30 seconds, although as above when power gen-
eration falls below 300W the UPS discharges and the
warning time decreases. When the warning time reaches
zero, Yank issues a warning and transfers the transient
VM to a stable server. Likewise, when the warning
time is non-zero continuously for a minute, Yank reacti-
vates the transient server and transfers the VM back to it.
Again, we run TPC-W in the VM and measure response
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Figure 11: TPC-W response time as power varies

time at the client as power generation varies.
Figure 12(a) and (b) shows that for both days Yank

adapts to power variations with negligible impact on ap-
plication performance. The sunny day (a) only requires
the transient server to deactivate once, and has negligible
impact on response time throughout the day. The cloudy
day (b) requires the transient server to deactivate just
seven times throughout the day. Thus, the application
experiences seven brief periods of downtime, roughly 50
seconds in length, over the day. However, even though
power is more intermittent than the sunny day, outside of
these seven periods, the impact on response time is only
slightly higher than during the sunny day. Note that, in
this experiment, the periods where the VM executes on a
stable server are brief, with Yank migrating the VM back
to the transient server after a short time.
Wind Power. Wind power varies significantly more than
solar power. Thus, in this experiment, we use a less
conservative approach to computing the warning time.
Rather than computing the warning time based on a
UPS’s remaining energy, we use a simple past-predicts-
future (PPF) model (from [27]) to estimate future en-
ergy harvesting. The model predicts energy harvesting
over the next 10 seconds will be same the same as the
last 10 seconds. As above, we compress a wind energy
trace from 7am to 5pm to two hours and scale its aver-
age power generation to the server’s power. Since our
PPF predictions operate over 10 second intervals, we use
a UPS capacity that provides 10 seconds of power if pre-
dictions are wrong. We again measure TPC-W response
time as it shifts between a transient and stable server.

Figure 13(a) shows the PPF model accurately predicts
power over these short timescales even though power
generation varies significantly, allowing Yank to issue
warnings with only a small amount of UPS power. Fig-
ure 13(b) shows the corresponding TPC-W response
time, which is similar to the response time in the more
stable solar traces. Of course, as during the cloudy day
with solar power, when wind generation drops for a long
period there is a brief downtime as the VM migrates from
the transient server to a stable server.
Result: Yank is flexible enough to handle different levels
of intermittency in available power resulting from varia-
tions in renewable power generation.
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Figure 12: Yank using solar power on both a sunny and cloudy day.
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Figure 13: Yank using wind power.

6 Related Work

Prior work on supporting renewables within a data center
primarily targets non-interactive batch jobs, since these
jobs are more tolerant to long delays when renewable
power is not available. For example, GreenSlot [11] is
a general batch job scheduler that uses predictions of fu-
ture energy harvesting to align job execution with pe-
riods of high renewable generation. Similarly, related
work [2, 12] proposes similar types of scheduling algo-
rithms that specifically target MapReduce jobs. These
solutions only support non-interactive batch jobs, and, in
some cases, specifically target solar power [10], which
is more predictable than wind power. Yank takes a dif-
ferent approach to support interactive applications run-
ning off renewable power. However, Yank’s snapshots of
memory and disk state are generic and also capable of
supporting batch applications, although we leave a direct
comparison of the two approaches to future work.

Recent work does combine interactive applications
with renewables. For example, Krioukov et. al. design
a power-proportional cluster targeting interactive appli-
cations that responds to power variations by simply de-
activating servers and degrading request latency [17].
In prior work we propose a blinking abstraction for
renewable-powered clusters, which we have applied to
the distributed caches [26, 28] and distributed file sys-
tems [15] commonly used in data centers. However,
blinking to support intermittent renewable energy re-
quires significant application modifications, while Yank
does not. iSwitch is perhaps the most closely-related
work to Yank [18]. iSwitch assumes a similar design

for integrating renewables into data centers, including
some servers powered off renewables (specifically wind
power) and some powered off the grid. However, iSwitch
is more policy-oriented, tracking variations in renew-
able power to guide live VM migration between the two
server pools. In contrast, Yank introduces a new mecha-
nism, which iSwitch could use instead of live migration.

7 Conclusion
Yank introduces the abstraction of a transient server,
which may terminate anytime after an advance warning.
In this paper, we apply the abstraction to green data cen-
ters, where UPSs provides an advance warning, due to
power shortfalls from renewables, move transient server
state to stable servers. Yank fills the void between Re-
mus, which requires no advance warning, and live VM
migration, which requires a lengthy advance warning, to
cheaply and efficiently support transient servers at large
scale. In particular, our results show that a single backup
server is capable of maintaining memory snapshots for
up to 15 transient VMs with little performance degrada-
tion, which dramatically decreases the cost of providing
high availability relative to existing solutions.
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